(2y^5+3y^4+y+1)+(8y^5-3y^4+4y-7)=

Simple and best practice solution for (2y^5+3y^4+y+1)+(8y^5-3y^4+4y-7)= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2y^5+3y^4+y+1)+(8y^5-3y^4+4y-7)= equation:


Simplifying
(2y5 + 3y4 + y + 1) + (8y5 + -3y4 + 4y + -7) = 0

Reorder the terms:
(1 + y + 3y4 + 2y5) + (8y5 + -3y4 + 4y + -7) = 0

Remove parenthesis around (1 + y + 3y4 + 2y5)
1 + y + 3y4 + 2y5 + (8y5 + -3y4 + 4y + -7) = 0

Reorder the terms:
1 + y + 3y4 + 2y5 + (-7 + 4y + -3y4 + 8y5) = 0

Remove parenthesis around (-7 + 4y + -3y4 + 8y5)
1 + y + 3y4 + 2y5 + -7 + 4y + -3y4 + 8y5 = 0

Reorder the terms:
1 + -7 + y + 4y + 3y4 + -3y4 + 2y5 + 8y5 = 0

Combine like terms: 1 + -7 = -6
-6 + y + 4y + 3y4 + -3y4 + 2y5 + 8y5 = 0

Combine like terms: y + 4y = 5y
-6 + 5y + 3y4 + -3y4 + 2y5 + 8y5 = 0

Combine like terms: 3y4 + -3y4 = 0
-6 + 5y + 0 + 2y5 + 8y5 = 0
-6 + 5y + 2y5 + 8y5 = 0

Combine like terms: 2y5 + 8y5 = 10y5
-6 + 5y + 10y5 = 0

Solving
-6 + 5y + 10y5 = 0

Solving for variable 'y'.

The solution to this equation could not be determined.

See similar equations:

| 42b^2-60b-48=0 | | 28n^2-8n=0 | | 4-x=16-2x | | 4p-6+6=2p+10 | | 3b^3-7b^2=0 | | 4sin(2x)=3+cos(x) | | x^2-6+1=0 | | 8(x-1)-17(x-3)=4(4x-9)+4 | | -4x+2=8x+1 | | X+.05x=71000000 | | (5x+3)(-x+4)= | | 10a^2+84a+98=0 | | 7x-2=-14 | | -27+4g=33 | | 15x^2+123x-108=0 | | 18m=6m | | 2x^3-17x=0 | | 3-2x=x^2+3x-3 | | 4x+5=2x-8 | | 5k^3-26k^2+24k=0 | | 2x^3-17=0 | | x+(x-1)=55 | | 74=4+2b | | ln(3x+6)=7 | | 3(4x-1)=6 | | 6y=3x+2 | | 30x-(-x+6)+(-5x+4)=-(5x+6)+(-8+30) | | X^2+4x-y-6=0 | | (2cos^2x-1)-cosx=0 | | 24b=6b | | 20*8= | | X+6(x+2)=3x-4 |

Equations solver categories